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ABSTRACT: The Sahel has experienced strong climate variability in the past decades. Understanding its implications for
natural and cultivated ecosystems is pivotal in a context of high population growth and mainly agriculture-based livelihoods.
However, efforts to model processes at the land–atmosphere interface are hindered, particularly when the multi-decadal
timescale is targeted, as climatic data are scarce, largely incomplete and often unreliable.

This study presents the generation of a long-term, high-temporal resolution, multivariate local climatic data set for Niamey,
Central Sahel. The continuous series spans the period 1950–2009 at a 30-min timescale and includes ground station-based
meteorological variables (precipitation, air temperature, relative and specific humidity, air pressure, wind speed, downwelling
long- and short-wave radiation) as well as process-modelled surface fluxes (upwelling long- and short-wave radiation,
latent, sensible and soil heat fluxes and surface temperature). A combination of complementary techniques (linear/spline
regressions, a multivariate analogue method, artificial neural networks and recursive gap filling) was used to reconstruct
missing meteorological data. The complete surface energy budget was then obtained for two dominant land cover types, fallow
bush and millet, by applying the meteorological forcing data set to a finely field-calibrated land surface model. Uncertainty in
reconstructed data was expressed by means of a stochastic ensemble of plausible historical time series.

Climatological statistics were computed at sub-daily to decadal timescales and compared with local, regional and global data
sets such as CRU and ERA-Interim. The reconstructed precipitation statistics,∼1 ∘C increase in mean annual temperature from
1950 to 2009, and mean diurnal and annual cycles for all variables were in good agreement with previous studies. The new
data set, denoted NAD (Niamey Airport-derived set) and publicly available, can be used to investigate the water and energy
cycles in Central Sahel, while the methodology can be applied to reconstruct series at other stations.
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1. Introduction

The African Sahel is one of the regions in the world that
has experienced the strongest climatic variations in the past
decades (Hulme, 1992, 2001; Nicholson, 2001). In Central
Sahel, annual precipitation underwent a strong decrease
in the 1970s–1980s followed by a partial recovery in the
1990s–2000s compared with the period 1950–1969 (Le
Barbe et al., 2002; Lebel and Ali, 2009), while extreme
rainfall occurrence could be increasing (Panthou et al.,
2014). In parallel, the annual temperature rose faster than

* Correspondence to: C. Leauthaud, HSM, 300 avenue Emile Jeanbrau,
34000 Montpellier, France. E-mail: crystele.leauthaud@cirad.fr
†Present address: CIRAD, UMR G-EAU, F-34398 Montpellier, France.

the global average, with an increase in mean above 1 ∘C
during March–October from 1950 to 2000 (Guichard
et al., 2015). Together with important vegetation and land
use change (Séguis et al., 2004; Leblanc et al., 2008; Hier-
naux et al., 2009a, 2009b; Dardel et al., 2014), and in
a context of high population growth and rainfed subsis-
tence farming, these climate variations have strong impli-
cations for food and water resources (e.g. Mahé and
Olivry, 1999; Favreau et al., 2009) that call for a better
understanding of underlying physical processes. In partic-
ular, surface–atmosphere interactions are critical factors
for the Sahelian water and energy cycles and influence
vegetation characteristics (Moorcroft, 2003), groundwater
recharge (Massuel et al., 2011; Ibrahim et al., 2014) and
atmosphere dynamics (Xue et al., 2010). Estimations of
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the surface water and energy budgets do exist for short
periods (e.g. Kahan et al., 2006; Saux-Picart et al., 2009;
Velluet et al., 2014), but estimations of long-term fluctu-
ations are still lacking as climatic data are scarce, largely
incomplete and sometimes unreliable.

Hydro-meteorological data are a valuable asset to
investigate process dynamics at the land–atmosphere
interface. Many reliable meteorological – observational
or analysis – data sets have long been available for vari-
ous time/space resolutions and coverage in other regions
of the world (e.g. Klok and Klein Tank, 2009; Herrera
et al., 2012; Chimani et al., 2013). Research in the Sahel,
especially concerning the water and energy cycles, has
been impeded by the limited amount of observational
data and the lack of consistent and homogeneous cli-
mate databases, with relevant space–time resolutions
and appropriate extensions in space/time (coverage,
period, missing data) to study the water and energy
cycles.

For instance, rainfall variability in the Sahel is char-
acterized by the intermittency and convective properties
of rainfall. These properties directly influence the vari-
ability of many other meteorological variables (radia-
tion, temperature, etc.) and the interaction with the sur-
face (e.g. run-off). Modelling of the water and energy
balance requires high-temporal resolutions as the con-
vective peaks of rain cells can only be captured at a
30-min or less time step. Hence, gridded data sets (e.g.
CRU, Mitchell and Jones, 2005) developed on a monthly
basis with a typical resolution of 100 km are not suitable
for fine-scale hydrological studies. In addition, available
high-temporal resolution data sets (ERA-40, Uppala et al.,
2005; ERA-Interim, Dee et al., 2011) do not yet provide
reliable estimates of precipitation for this region (e.g. Mey-
nadier et al., 2010).

Concerning extension in space and time, the few
long-term data sets from institutional ground stations,
with low network density and substantial missing data,
are of limited use for many applications, at least directly.
Recently, some high space–time resolution ground (e.g.
the AMMA-CATCH network, Lebel et al., 2009) or
remotely sensed data sets (Nicholson et al., 2003; Gosset
et al., 2013) have been made available, but provide limited
historical depth. When it comes to land surface response
variables, no multi-decadal field-based series exist, even
at a local scale.

Making the best use of scarce data also raises method-
ological issues that are far from being fully resolved.
Many gap-filling procedures exist. For instance, meth-
ods routinely applied to eddy-covariance flux data have
been discussed in detail (Falge et al., 2001; Moffat et al.,
2007). In comparison, gap filling of meteorological data
has been discussed to a lesser degree, although it is often
required for climatological analysis, modelling studies
or model/data comparisons (e.g. Schwalm et al., 2010).
Applicability and use of gap-filling methods in the Sahel
region still need to be assessed, especially for long-term
data sets.

A direct consequence of these issues is that mod-
elling efforts regarding the land–atmosphere interface are
hampered as soon as the multi-decadal timescale is tar-
geted. Putting the emphasis on the time-wise description
(long time-range with high-temporal resolution) that is
key for surface process studies in the Sahel, rather than
on resolving for spatial variability, the objectives of this
research were threefold:

• to produce a continuous and consistent series of the
main variables required in land surface-type models, for
the location of Niamey, which is typical of the Cen-
tral Sahel climate, at a 30-min time step over the period
1950–2009. These meteorological variables were: pre-
cipitation, air temperature, relative and specific humid-
ity, surface pressure, wind speed, downwelling long-
and short-wave radiation. Special care was taken to
ensure inter-variable coherence of these variables and
to estimate uncertainty in the determination of missing
data;

• to apply this meteorological series to a field-based land
surface model, in order to provide for the same period
a reference simulated series of the main land surface
response fluxes for two major land cover types, namely
millet crop and fallow bush. Estimated variables at
a 30-min time step included latent and sensible heat
fluxes, upwelling long- and short-wave radiation and
surface temperature;

• to analyse the main properties of these series and com-
pare them with those of pre-existing data sets.

The complete new data set is referred to as the Niamey
Airport-derived (NAD) data set and is comprised of
the NAD-M meteorological series and of the simu-
lated NAD-S land surface response series. The paper is
organized into five sections. The original data, general
approach and data set construction and application are
described in Section 2. Section 3 analyses the main
characteristics of the new data set, in terms of extent
of reconstructed data and of scale-dependent properties
(uncertainty, climatology, relation to available local and
gridded series) at diurnal to decadal timescales. The
value of the NAD data set is discussed in Section 4 and
conclusions are drawn in Section 5. Appendices S1 and
S2 (Supporting information) and Appendix A1 provide
technical details on methodology and skill of reconstruc-
tion steps, respectively. Note that all Figures but 3 and 7
are in colour in the online paper version.

2. Methodology of NAD construction and
application

2.1. Naming conventions

The variables of interest in this study consist of meteoro-
logical variables and of land surface response variables.
These variables are referred to via symbols, which are all
specified in Table 1. Table 1 also defines the acronyms of
the various data sets that are considered in this study.

© 2016 Royal Meteorological Society Int. J. Climatol. (2016)
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Table 1. List of variables and data sets. Characteristics of gridded data sets are provided in Appendix A2.

Code Meaning

Variables
G, H, LE Soil heat, sensible and latent flux, respectively (W m−2)
LW, SWdown, up, net Long- and short-wave downwelling, upwelling and net radiation (W m−2)
P Precipitation (mm)
Pa Air pressure (hPa)
q Specific humidity (g kg−1)
Rext Extraterrestrial radiation (W m−2)
RH Relative humidity (%)
Ta, Ts Air and soil temperature (∘C)
U Wind speed (m s−1)
Subscripts
24 h, 12 h, 3 h, 30 min, 5 min 24-hour, 12-hour, 3-hour and 5-minute cumulated precipitation. P12 h precipitation

occurs from 6 AM to 6 PM and from 6 PM to 6 AM
mean, max, min Daily mean, maximum and minimum (for Ta, RH)
Data sets for the Niamey airport station
DLY1, DLY2, DLY3, DLY4

O
ri

gi
na

l(
se

e
Ta

bl
e

2)

Daily (24 h) or twice daily (12 h) data for 1950–1980, 1981–2003, 1950–1990 and
1950–2003, respectively

FVE1, FVE2 Instantaneous (5 min) precipitation data for 1956–1998 and 1990–2009,
respectively

SYN1, SYN2, SYN3 Synoptic (3 h) data for 1950–1980, 1979–1995, 1996–2009, respectively
NAD

Fi
na

l Niamey Airport-Derived data set, produced by this study
NAD-M Meteorological data component of NAD
NAD-S Land surface characteristics component of NAD, for fallow bush (NAD-Sf) and

millet (NAD-Sm) land cover types
Other data sets (observations, gridded data, meteorological re-analyses)
ARM Atmospheric Radiation Measurement Climate Research Facility
BEST Berkeley Earth Temperature Averages for 1950-2009
CRU Climatic Research Unit TS3.1 for 1950-2009
ERA-40 European Centre for Medium-Range Weather Forecasts (ECMWF) re-analysis for

1958-2001
ERA-Interim ECMWF re-analysis for 1979-2009
GISS Goddard Institute for Space Studies land surface temperatures for 1950-2009
GHCN Global Historical Climatology Network version 2 and the Climate Anomaly

Monitoring System global land surface temperatures for 1950-2009
MERRA Modern-Era Retrospective analysis for Research and Applications for 1979-2009
NCEP2 National Centers for Environmental Prediction - Department of Energy Atmospheric

Model Intercomparison Project II (NCEP–DOE AMIP-II) Reanalysis for 1979-2009
SRB Surface Radiation Budget for 1984–2007

2.2. Available data

Long-term climatic series are scarce in Central Sahel.
The Niamey airport station (2.166∘E, 13.483∘N, 222 m,
Figure 1) data stand as an exception with rare 5-min pre-
cipitation observations beginning as early as 1956, as well
as valuable long-term daily and synoptic data. However,
these various data were found in sparse form from dif-
ferent sources, as nine different data sets (Table 2; see
Figure 2 for a display of data availability). Four sets
(DLY1, DLY2, DLY3 and DLY4) provided 24 h/12 h val-
ues for P, Ta and/or RH over different and sometimes
redundant periods. Few data were missing in these four
sets until 1980, after which only RHmean and P24 h were
available (Figure 2). Three synoptic series (SYN1, SYN2,
SYN3) provided 3-h observations of Ta, RH, Pa and U,
albeit some large gaps. Finally, two sets (FVE1 and FVE2)
provided 5-min precipitation data, P5 min, covering over
85% of observed rainy days (Figure 2(i) and (j)). Taken
all together, these data sets provided a rare picture of the
climate over the period 1950–2009: although missing data

were unavoidable at the 3-h or 5-min time steps, daily scale
information covered most days over this period.

In addition, four independent, shorter but quality
checked data sets from nearby stations (Figure 1 and
Table 3) were used as ancillary data sets. The Wankama
data set (Wankama-South site of AMMA-CATCH obser-
vatory, Cappelaere et al., 2009; Ramier et al., 2009) and
the Atmospheric Radiation Measurement data set (ARM,
Slingo et al., 2006; Miller and Slingo, 2007) provided
high time resolution data for P, Ta, RH, Pa, U, LWdown
and SWdown. They were used to calibrate and/or validate
the methods used to produce NAD. The Banizoumbou
(Goutorbe et al., 1994) and Agrhymet data sets, which
provided Ta, RH and SWdown, were used for general
comparison purposes.

2.3. General approach

To produce a gap-free, homogeneous and uncertainty-
bounded data series, a multi-step screening and gap-filling
methodology was devised, allowing to account for the

© 2016 Royal Meteorological Society Int. J. Climatol. (2016)
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Figure 1. Location of Niamey airport and ancillary stations in
nested-scale boxes: (a) West Africa, (b) South-West of Republic of

Niger, (c) City of Niamey (openstreetmap base map).

variety of situations that originated from such differ-
ent factors as variable types, interdependencies, or dura-
tion and resolution of available data. Specifically, the
meteorological data set (NAD-M) was produced in four
successive steps, and it was in turn used to estimate
land surface fluxes (NAD-S) with a physics-based soil–
vegetation–atmosphere transfer (SVAT) model (Table 4).

The first step consisted in quality checking all available
Niamey airport meteorological data sets and grouping sets
with equal time steps. The second step gap-filled the 3-h
and 5-min meteorological series. Depending on missing
data characteristics, methods ranged from simple spline
and linear regressions for variables with strong temporal
or inter-variable correlations, to more complex methods
jointly estimating multiple variables at the same time step.
In the third step, all meteorological series were trans-
formed to a 30-min time step. This time step appeared as
the best compromise between a good temporal resolution

and uncertainty in downscaling the synoptic data, as well
as being well-suited to modelling the water and energy
cycles in this environment. In the fourth step, radiative
fluxes SWdown and LWdown, which were not measured at
Niamey airport station but are frequently required, were
estimated using artificial neural networks. The fifth and
final step produced the land surface variables for fallow
bush and millet land cover types, with a SVAT model.

An ensemble approach was used to characterize the
uncertainty related to the gap-filling and estimation meth-
ods of NAD-M. Each gap-filling operation, devised with
a stochastic component, was repeated 100 times. Alto-
gether, these ensemble members reflect a range of possible
values for the missing data, and form the complete data
set of meteorological data (NAD-M). To reduce computa-
tion time, the NAD-S series of land surface response vari-
ables was constructed as a subset of ten ensemble mem-
bers, through random selection from the NAD-M ensem-
ble. Note that only this subset was used for the analysis
of resulting uncertainties in the various NAD variables, as
discussed in Section 3.

The following sections further describe these successive
steps, while detailed technical aspects are provided in
Appendices S1 and S2.

2.4. Step I: quality checking and standardization of
original data sets

The hydro-meteorological data for Niamey airport pre-
sented three major drawbacks: they (1) came from differ-
ent sources, in separate files and various formats, possibly
including alternative sensors; (2) were incomplete over the
period 1950–2009 and (3) with different time steps.

Special care was therefore taken to check their coher-
ence. Easily detectable errors were corrected, through
despiking and direct inconsistency removal (characteris-
tics of detected errors are supplied in Appendix A3). Data
were then assembled into four distinct series, consisting,

Table 2. Raw data sets initially available at the Niamey airport station. Measurement height for climatic variables was 2m, except
for U (10 m). Tamean and RHmean were calculated from their daily maximum and minimum values. ‘AMMA’ means that data were

obtained at http://database.amma-international.org. Websites to access data are specified in Appendix S3.

Data set Versions Perioda Variables Temporal resolution References

DLY1 WMOb (AMMA)
1950–1980

P24 h, RHmax, Tamax, RHmin, Tamean 24 h
–P12 h 12 h

DLY2 SIEREMc 1981–2003 RHmean 24 h Boyer et al., 2006
DLY3 SIEREM 1950–1990 P24 h 24 h Boyer et al., 2006
DLY4 DMNd (AMMA) 1950–2003 P24 h 24 h Le Barbe et al., 2002;

Panthou et al., 2014
SYN1 WMO (AMMA) 1950–1980e Ta, RH, Pa, U 3 h –
SYN2 WMO (AMMA) 1979–1995 Ta, U 3 h –
SYN3 WMO (AMMA) 1996–2009 Ta, RH, Pa, U 3 h –
FVE1f DMN 1956–1998 P5 min 5 min Lubès-Niel et al., 2001
FVE2 AMMA-CATCH 1990–2009 P5 min 5 min Balme et al., 2006

aFor synoptic data: first and last year for which all data available.
bWorld Meteorological Organization.
cSystème d’Informations Environnementales sur les Ressources en Eau et leur Modélisation.
dDirection de la Météorologie Nationale.
eEnd date for Pa: 1965.
fEvent data.

© 2016 Royal Meteorological Society Int. J. Climatol. (2016)
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Figure 2. Data availability over time. Left: Yearly percentage of available data for Ta, RH, Pa and U (top to bottom) for the raw series (colour code
in (a) and symbol code on bottom line. Right: Percentages of available data for P (P24 h, P12 h and P5 min, top to bottom) mapped by year and month,

for raw series.

respectively, of 24-h (P24 h, Tamean and RHmean), 12-h
(P12 h), 3-h synoptic (Ta, RH, Pa, and U) and 5-min
(P5 min) resolution data. As our objective was to produce
high-temporal resolution data, the 3-h and 5-min series
were selected as the base series, while the 24-h and 12-h
series were kept to provide additional information for the
gap-filling process.

2.5. Step II: gap-filling procedures

Gap filling was undertaken as five successive operations
(denoted steps II.1 to II.5) in order to account for the
multiple structures of missing data and variables involved
(Figure 3).

In step II.1, cubic spline interpolation was applied to Ta,
RH and Pa to reconstruct single-point missing data. This
operation was validated by simulation for a random sample
from the synoptic series. A stochastic component, ran-
domly drawn from a Gaussian distribution defined by the
mean and standard deviation of the error on the validation
sample, was added to each estimation to account for uncer-
tainty in this interpolation.

Step II.2 focused on RH, which presented large
sequences of missing data. A strong linear relation-
ship was generally found between RH and Ta for a given
day-of-year (DoY) and hour-of-day (HoD), consistently
with findings by Guichard et al. (2009). RH was esti-
mated at 2920 synoptic times with statistically significant

© 2016 Royal Meteorological Society Int. J. Climatol. (2016)
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Table 3. Ancillary data sets from nearby stations. Measurement heights for the ARM and Wankama data sets were 2 m (except for
U: 3 m) and 3 m, respectively. For these data sets, all SWdown values above clear-sky radiation, as defined by Allen et al. (1998), were

set to clear-sky radiation. Websites to access data are specified in Appendix S3.

Data
set

Source Lon,
Lat (∘)

Distance from
the Niamey airport

station (km)

Period Variables Available data
(%)a

Temporal
resolution

References

Banizoumbou Hapex-
Sahel

2.651, 13.519 54 1991–1993 Ta, RH,
SWdown

88 1 h Goutorbe et al.,
1994

Agrhymet Agrhymet 2.101, 13.496 7 1953–1979 Ta, RH 90 1 month Boyer et al., 2006
2003–2009 98 1 h

ARM ARM 2.174, 13.477 1 2006 Ta, RH, U, Pa,
q, SWdown,
LWdown

97 30 min ARM, 1993;
ARM, 1994;
Slingo et al.,
2006; Miller and
Slingo, 2007

Wankama AMMA-
CATCH

2.630, 13.644 54 2005–2013 P, Ta, RH, q,
SWdown,
LWdown, U, Pa

100 30 min Cappelaere et al.,
2009; Ramier
et al., 2009;
Velluet et al.,
2014

aAcross all variables during the period in which the data set was available.

Table 4. Methodological steps of NAD construction.

Steps Variables concerned Temporal resolution Continuous series

I: Quality checking P, Ta, RH, U, Pa 24 h, 12 h, 3 h, 5 min No
II: Gap filling P, Ta, RH, U, Pa 3 h, 5 min Yes
II: Merging of data sets P, Ta, RH, q, U, Pa 30 min Yes
IV: Estimation of radiation SWdown, LWdown 30 min Yes
V: Estimation of surface responses SWup, LWup, LE, H, G, Ts 30 min Yes

Gap filling Step

UTa RH Pa P5 min

Ta RH

Ta RH

Pa

Ta RH Pa 5 min

Ta RH Pa P5 min

UTa RH Pa P

RHTa

P

5 min

II.1

II.2

II.3

II.4

II.5

Figure 3. NAD construction methodology: description of the gap-filling
operations (steps II.1–II.5) performed in step II. Boxes correspond
to variables (symbols defined in Table 1), filled diamonds designate
transformations performed at each step. Temporal resolution of variables

at step II was 3 h, except for P5 min.

linear regression equations (p-value< 0.05 and R2 > 0.6).
Again, stochastic components randomly drawn from the
Gaussian error distributions were added to each estimation
to account for uncertainty.

In step II.3, remaining missing data for all variables
except U were jointly estimated through a multivari-
able analysis gap-filling procedure. An analogue method,

similar to that of Séguis et al. (2004), was devised to gen-
erate stochastically an ensemble of possible occurrences
using all available information at different temporal res-
olutions (24 h, 12 h, 3 h, 5 min). For each day (denoted
d) showing missing synoptic and/or precipitation values,
data were selected from days, within a 30-DoY win-
dow centred on DoY(d) (DoY for day d) of the full data
record, with characteristics ‘similar’ to those of day d.
Similarity was defined by a decision tree based on timing
and amplitude of variables for which data were available
on day d. One among the ‘similar’ days was then ran-
domly selected to fill up the incomplete day d. Hence,
variables missing simultaneously were reconstructed with
data from the same day, preserving inter-variable coher-
ence. When the decision tree was unsuccessful (sim-
ilarity criteria of the decision tree never met), a day
was taken randomly within the whole 30-DoY window
record (step II.4). Technical details can be found in
Appendix S1.

Wind speed was not handled through the above opera-
tions because the criteria used were not relevant for this
variable. No strong linkages could be established with
other variables, so that U was reconstructed separately
(step II.5). For each year with missing data, a different year
was first randomly selected. Data from this year with the
same DoY as the missing data were then used to fill in
the gaps. As the selected year could itself contain missing
data, the process was iterated until all gaps were filled. This

© 2016 Royal Meteorological Society Int. J. Climatol. (2016)
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was done to preserve as much as possible of the statistical
properties of the variable, such as the auto-correlation over
short timescales.

2.6. Step III: merging of synoptic and 5-min data

In step III, the two 3-h (Ta, RH, Pa, U) and 5-min data
sets were merged into a single series at a 30-min time
step. Synoptic data were disaggregated using cubic spline
interpolation, a method validated against the Wankama
high-resolution data set. As in step II, an additive stochas-
tic component was randomly drawn from the Gaussian dis-
tribution fitted to the errors on the validation set. P5 min was
aggregated to P30 min.

2.7. Step IV: estimation of downwelling radiation

Methods described in the previous sections could not
be used to estimate SWdown and LWdown, as these were
not measured at Niamey airport station. Furthermore,
existing general-purpose equations (Brutsaert, 1975;
Hargreaves and Samani, 1982; Prata, 1996) only provide
daily estimates and were found to underestimate wet
season variability. Therefore, tailor-made artificial neural
networks – capable of identifying complex non-linear
relationships – were preferred, to derive downwelling
radiation from available variables. Two neural networks,
estimating SWdown or LWdown from extraterrestrial radia-
tion Rext, DoY, HoD, Ta and P, were trained with the 8-year
Wankama data set. They were then successfully validated
against the 1-year ARM data to verify transferability to

the Niamey Airport location. To reflect training errors,
an additive stochastic component for each HoD and DoY
was drawn from the error distribution. Technical details
are presented in Appendix S2.

2.8. Step V: application to estimation of land surface
response variables (NAD-S)

The NAD-M series of meteorological variables, produced
by steps I–IV, was finally applied to a physically based
SVAT model to obtain estimates of land surface fluxes
for two typical land cover types, fallow bush and millet
crop. Description of these land cover types can be found
in Boulain et al. (2009) and in Velluet et al. (2014).

The simple soil-plant-atmosphere transfer (SiSPAT)
model (Braud et al., 1995) was used to simulate the
energy and water transfers in these two systems. It had
previously been used successfully to simulate the water
and energy cycles for these land cover types in the Sahel
conditions (Braud et al., 1997; Velluet et al., 2014), and
reliable calibration was available for these land cover
types at the nearby Wankama observatory (Velluet, 2014;
Velluet et al., 2014). To limit computational time, a ran-
dom subset of ten ensemble members from NAD-M was
used for meteorological forcing of the model. For each
land cover type, a mean seasonal cycle for leaf area was
derived from the Wankama field data, and was applied
with a phasing in time based on the rainfall pattern of
each simulated year (growth was assumed to be initiated
with the second >10 mm rainfall event). Dynamics of
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vegetation rooting and height, as well as values for the
model’s ecophysiological and soil parameters, were taken
from Velluet et al. (2014).

3. Characteristics of new NAD data series

This section highlights the main characteristics of the
new NAD series, in terms of amount of reconstructed
data (Section 3.1) and of the series’ key properties, as to
uncertainty, climatology, and relation to pre-existing data
sets, both at short timescales (diurnal and seasonal, Section
3.2) and at large timescales (annual to decadal, Section
3.3). These properties are derived from the ten-member
ensemble covering all NAD-M and NAD-S variables.

Note that detailed performance criteria for the differ-
ent data reconstruction steps (steps II and IV) are anal-
ysed in Appendix A1. Altogether, they reflect upon the
ensemble-described uncertainty distributions associated
with each data entry in the data set.

3.1. Extent of reconstructed data

For P5 min, most missing data corresponded to days for
which raw observations of P24 h were nil, with only 13%
occurring in days for which P24 h > 0 and 2.5% in days for
which no precipitation data were available (Figure 4(f)).

Respectively, 34, 48, 70 and 32% of Ta, RH, Pa and
U series’ volumes were reconstructed (Figure 4(a)–(e)).
Missing data for the original synoptic series were unevenly
distributed in time, with essentially the following pat-
terns: (1) most data were available for 1950–1957; (2)
all variables were missing for 1958–1967; (3) most data,
except Pa, were available for 1968–1979; (4) RH and
Pa were entirely missing, whilst more than 60% of data
were available for Ta and U, for 1980–1995; (5) less
than 30% data were missing for all variables during
1996–2009.

For Ta, 11% of the series were reconstructed by
single-point interpolation (step II.1). The multivariate
analogue method (step II.3) reconstructed 22 and 37% of
Ta and RH series, respectively. Additionnally, 4 and 6% of
the RH series were reconstructed by spline interpolation
(step II.1) and linear regression from observed Ta (step
II.2), respectively. For Pa, 23% of the whole series were
reconstructed with the multivariate analogue method,
against 43% by the seasonal drawing of step II.4. Note
however that the amplitude of Pa is rather small in this
region (973–993 hPa for the Wankama series), with little
influence on land surface processes.

Finally, the NAD-S land surface response subset is
wholly synthetic, obtained by model transfer from the
Wankama observatory.

3.2. Diurnal and annual cycles

When compared with the ARM field data set, and by
contrast with ERA-Interim, the NAD-M series correctly
reproduced the monthly mean diurnal cycles of all vari-
ables (Figure 5, illustrating three different months of 2006,
in the dry and wet seasons). This is particularly obvious

for precipitation and surface wind speed, for which the
differences between ERA-Interim and ARM/NAD-M are
very similar to those reported in previous studies (Nikulin
et al., 2012; Largeron et al., 2015). For land surface vari-
ables, diurnal variations agree well all year round with the
Wankama field observations (Velluet, 2014), as illustrated
by Figure 5 for the millet cover.

Uncertainties due to the reconstruction methods are
depicted at the sub-daily scale in Figure 6, which shows
24-h series for the ten ensemble members for 5 illus-
trative days, for which either all data were available
(columns a and b) or for which availability gradually
decreased (columns c–e). Uncertainty is generally lower
during the dry season (columns a and b). Uncertainty log-
ically increases with decreasing availability of data (left to
right), but the general diurnal cycle is still distinguishable
even when no data were available (Figure 6(e)). Figure 6
further illustrates the good agreement in diurnal cycle
between NAD-M and ARM. In most cases, the uncer-
tainty affecting meteorological variables at the sub-daily
scale falls down at the daily scale (Figures 6 and 7(a)
showing distributions of daily ensemble ranges). Even
though a few days showed large uncertainties (outliers
in Figure 7(a), essentially when no data were available),
most daily values had low uncertainties (see, e.g. 75th per-
centiles to compare to ten ensemble member mean values
in Figure 7(a)), a noticeable exception being wind speed U
in the 1960s.

Furthermore, the composite annual cycles over
2006–2009 for both hydro-meteorological and surface
flux variables were quite similar to those of the Wankama
series for this overlapping period (Figure 8), although
SWdown, q and H for millet are respectively higher,
lower and higher for the Wankama series by 8.9 W m−2,
1.7 g kg−1 and 9.9 W m−2. The composite annual cycle
over 1950–2009 (Figure 8) further agree with comparable
data for Central Sahel (Guichard et al., 2015, not shown).
Cycles for the different variables are imprinted by the
basic dry/wet season pattern, with monomodal (e.g. q, LE)
or bimodal (e.g. Ta) behaviours (see Ramier et al., 2009;
Guichard et al., 2009 or Velluet et al., 2014, for detailed
analysis). Variability of SWdown increases markedly dur-
ing the rainy season, in relation to cloud cover. LE, and
consequently H, shows the largest variability throughout
the rainy season due to the large temporal variability in
precipitation.

3.3. Inter-annual and multi-decadal variability

3.3.1. NAD properties

Over the period 1950–2009, annual ensemble mean pre-
cipitation ranged from 293 to 979 mm (Figure 9(a), and
Table 5), with a mean and standard deviation of 561 and
141 mm. Precipitation fluctuations were quite similar to
those analysed by Séguis et al. (2004), reflecting in par-
ticular the severe regional droughts of the early 1970s and
1980s. All other meteorological and land cover-related
variables, except Pa, also showed strong inter-annual fluc-
tuations (Figure 9(b)–(l), thick black, green or blue lines
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Figure 5. Diurnal cycles (30-min resolution): February, June and September 2006 monthly composites (left to right) for ARM, NAD-M, NAD-Sm
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in U are also due to different measurement heights.

for NAD ensemble means) reflecting the large Sahelian
climatic variability. In particular, the strong anomalies of
Ta observed between 1969 and 1980 at Niamey are traced
throughout West Africa, although they were distinct from
larger scale fluctuations (Figure 10(a)). The 1969 and
1973 peaks are a record of the 1970s drought although
the signal is more complex as they correspond to dry
and rainy season anomalies, respectively. An increase
by ∼1 ∘C in Ta (against an inter-annual standard devi-
ation of 0.5 ∘C) was noted over the six-decade period

(Table 5). Wind speed U is stronger during the period
1974–2009 than 1950–1974, with relatively low values
during 1967–1973 (Figure 9(g)). The latter coincide
with the high-temperature and low precipitation of this
first regional drought period and could therefore be
another feature of this very strong climatic anomaly.
A similar pattern can be seen in recently published data
for a station ∼1000 km east of Niamey (Hassane et al.,
2016), strengthening the significance of this observation.
Annual LWdown was strongly correlated to Ta (correlation:
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3-h data are shown for comparison.

𝜌= 0.92). By contrast, LWdown was only mildly related
to P (𝜌=−0.31), as was SWdown to Ta and P (𝜌= 0.24
and −0.13). LE was highly correlated to P (𝜌= 0.71 and
𝜌= 0.81 for millet and fallow bush, respectively) with lows
during the 1970s and 1980s droughts. On the contrary, H
was negatively correlated to P (𝜌=−0.65 and 𝜌=−0.73,
respectively) and LE (𝜌=−0.73 and 𝜌=−0.86, respec-
tively). SWup (respectively, LWup) was systematically
higher (respectively, lower) for fallow bush compared
with millet crop.

Uncertainty in the estimation of annual precipitation
was low (1.7% ratio of median annual uncertainty to
inter-annual ten-member ensemble mean P, Figure 7(b)).
This was even more so for annual Ta and q, with the above
ratio being 0.2 and 0.9%, respectively; Figures 7(b) and
9(b) and (c)). U and Pa (the latter not shown in Figure 9)

were entirely reconstructed for the period 1958–1967,
and additionally over 1975–1995 for Pa and 1980–1989
for U. As 24-h values were not available, the recon-
struction procedure did not strongly constrain U dur-
ing these periods (Figure 7(b)), but uncertainty remained
globally acceptable (above ratio of 13.2%). The uncer-
tainties in surface flux variables (Figure 9(h)–(l)) were
directly linked to those of the meteorological variables.
For example, uncertainties in U led to the highest uncer-
tainties in the surface flux variables for H and LWup
through the partitioning of downwelling radiation. All in
all, and except for U, annual-scale uncertainty linked to
the gap-filling and estimation procedures was lower than
inter-annual variability, lending confidence in the NAD-M
subset. Resulting uncertainties were very low for mean
decadal values (Table 5).
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3.3.2. Comparison of NAD-M with other data sets

Annual values of NAD-M were compared (Table 6
and Figure 9) with data sets from close-by stations
(Agrhymet, ARM, Banizoumbou, Wankama), gridded
data sets (CRU, GHCN-CAMS – hereafter referred to as
GHCN, SRB) or meteorological re-analyses (ERA-40,
ERA-Interim, NCEP2 and MERRA) – see Appendix
A2 for gridded and re-analysis data sets specifics. The
negative anti-correlation in P between NAD and Wankama
(∼60 km apart; note however 8-year sample only) reflects
the strong spatial variability in Sahelian precipitation.

On longer timescales, annual precipitation from CRU
(552± 115 mm) and NAD-M were positively correlated
(𝜌= 0.81) and consistent with observed multi-decadal fluc-
tuations (Le Barbe et al., 2002). By contrast, re-analyses
data did not capture the 1950–2009 mean nor the decadal
values of precipitation observed at Niamey airport station
and characteristic of the region (Tables 5 and 6 and
Figure 9(a)).

Annual Ta mean and variability were remarkably close
for NAD-M and the longest gridded data sets (CRU,
GHCN), supporting the ∼1 ∘C increase detected over the
full period (Figure 9(b)). Annual values were slightly
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Figure 8. 1950–2009 composite annual cycle: (a) mean and standard deviation in 30-DOY running window of ten-member daily ensemble average
for each NAD-M meteorological variable; full DOY range shown for ten ensemble members of precipitation P24 h, to highlight the maximum rainy
season extent. (b) Same for energy response variables of NAD-Sm (millet land cover type). Mean 2006–2009 cycle at Wankama station superimposed
for comparison with the mean 2006–2009 cycle for NAD-M and NAD-Sm. Note that differences in U between NAD and Wankama data sets can

also be due to different measurement heights.

higher compared to GHCN but lower compared with the
other data sets. It’s noteworthy that ERA-40 does not
capture the 1969–1980 temperature anomalies. NCEP2
was found to be much colder compared with all other
long-term data sets (also found otherwise for the whole
Sahel). Finally, correlation with Agrhymet was also high
(𝜌= 0.74), especially for the 1953–1979 period (𝜌= 0.88).

q and RH were slightly higher in NAD-M compared
with the Wankama and ARM series, with a mean annual
difference of 2.06 g kg−1 between NAD-M and ARM
(Table 6). This difference arose from the original RH data

and could be due to either instrumental or environmental
differences between stations (see Appendix S4). How-
ever, correlation with ERA-40 was high (𝜌≥ 0.80) and
inter-annual variability was well reproduced (Figure 9(c)
and (d)).

LWdown was well correlated with the Wankama data
(𝜌= 0.95) and with NCEP2 (𝜌= 0.73) and to a lesser
degree with ERA-40, ERA-Interim and MERRA, but
with lower inter-annual variability in NAD-M. Also,
it was generally higher than the other long-term data
sets while in very good agreement with the ARM 2006
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Table 5. NAD at annual to decadal scales. Centre columns: mean decadal values (bold) and standard deviation (italic) for ten ensemble
members from 1950s to 2000s. Right columns: statistical characteristics (mean, standard deviation, maximum, minimum) of mean

annual variables in NAD-M and NAD-S over 1950–2009. For NAD-S (bottom): grey, millet; white, fallow.

Variable Unit Decade Mean Standard deviation Maximum Minimum

1950s 1960s 1970s 1980s 1990s 2000s

NAD-M
P mm year−1 638.6 657.3 522.2 458.0 546.2 542.4

561 141 979 2930.1 0.1 0.5 3.8 0.0 9.4

Ta ∘C 28.7 29.0 29.1 29.1 29.4 29.8
29.2 0.5 30.3 28.20.0 0.0 0.0 0.0 0.0 0.0

q g kg−1 10.6 10.6 10.4 10.2 10.3 10.6
10.4 0.4 11.4 9.50.0 0.0 0.0 0.0 0.0 0.0

Pa hPa
984.5 984.5 984.4 984.5 984.5 984.4

984.5 0.2 985.1 984.00.0 0.0 0.0 0.0 0.0 0.0

U m s−1 2.9 2.9 3.0 3.2 3.4 3.2
3.1 0.3 3.9 2.10.1 0.1 0.0 0.1 0.0 0.0

SWdown W m−2 238.2 241.5 243.4 234.0 236.9 238.9
238.8 4.8 249.8 225.20.1 0.2 0.1 0.3 0.2 0.1

LWdown W m−2 387.7 388.6 388.9 390.1 392.0 393.4
390.1 2.8 396.5 384.20.0 0.1 0.0 0.1 0.0 0.0

NAD-S SWup W m−2 73.7 74.5 75.5 72.6 73.5 74.1 73.9 1.6 77.7 69.2
0.0 0.1 0.0 0.1 0.1 0.0

SWup W m−2 75.3 76.1 77.6 74.8 75.5 76.0
75.8 1.8 80.3 70.50.1 0.1 0.0 0.1 0.1 0.1

LWup W m−2 489.8 491.9 493.6 491.1 491.5 495.2 492.2 4.1 504.9 485.1
0.3 0.3 0.1 0.3 0.1 0.1

LWup W m−2 484.1 486.4 488.3 486.7 486.9 489.9
487.1 4.2 500.1 480.20.3 0.5 0.1 0.3 0.1 0.1

LE W m−2 34.1 35.1 32.0 30.2 33.4 32.6 32.9 3.2 39.5 25.5
0.1 0.2 0.1 0.1 0.1 0.1

LE W m−2 38.5 39.2 34.8 31.2 34.9 35.8
35.7 4.8 44.7 24.10.2 0.2 0.1 0.2 0.1 0.2

H W m−2 28.4 28.5 31.1 30.3 30.5 30.2 29.8 2.5 35.0 24.1
0.3 0.4 0.1 0.5 0.1 0.1

H W m−2 28.5 28.6 31.8 31.7 31.8 30.6
30.5 3.2 37.3 22.80.2 0.3 0.1 0.5 0.1 0.1

Ts ∘C 31.8 32.1 32.4 32.0 32.1 32.6 32.1 0.6 34.0 31.1
0.0 0.1 0.0 0.1 0.0 0.0

Ts ∘C 31.0 31.4 31.7 31.4 31.4 31.9
31.4 0.6 33.5 30.30.0 0.1 0.0 0.1 0.0 0.0

annual LWdown (Figure 9(f)). Correlations in SWdown
between NAD-M and the other long-term data sets were
poor over 1950–2009 (e.g. with ERA-40: 𝜌=−0.16),
but improved after 1985 (𝜌= 0.73 with ERA-40, mean
difference of 4.8 W m−2). Big discrepancies between the
various re-analyses data for SWdown and LWdown suggest
that these variables are difficult to estimate (Roehrig et al.,
2013). By contrast, our data set provides estimates of these
radiative fluxes that are consistent with quality field data
at the nearby sites. Finally, it is noteworthy that MERRA
P, Ta and q were in disagreement with the gridded data,
the re-analysis data and the current data set, suggesting
that it does not properly capture the climatic conditions in
Central Sahel.

Comparison of surface flux estimates was challenging
as only the Wankama series (3-year overlap), showing an
appropriate closure of the energy balance, was available.
Climatological differences in forcing fluxes (P, q, SWdown)
probably explains the observed inter-annual differences
between estimates (Figure 9(h) and (l)) as the partition-
ing of SWdown into the components of the mean annual

energy budgets, albeit absolute differences in H fluxes of
∼10 W m−2, were similar (Table 7).

4. Discussion

The originality of this study was to make use of comple-
mentary original data sets, consistent with each other and
with overall infrequent missing data, to constitute a data
set fit for modelling purposes. Their different character-
istics led us to select multiple gap-filling methods that
made best use of the wide variety of information available.
These methods appeared to preserve the main features of
the climatology of Central Sahel from the sub-daily to
the decadal scale and allowed to estimate the uncertainty
relative to the reconstructed variables. In particular, the
analogue method as used by Séguis et al. (2004) was
generalized to jointly estimate several hydro-
meteorological variables, thus conserving inter-variable
coherence. Neural networks provided estimations of
SWdown and LWdown that reproduced well the typical
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Table 6. Comparison with existing data sets: correlation (bold) and mean difference (italic) in annual values of the main meteorolog-
ical variables between NAD-M and other data sets.

Variable Gridded data sets Meteorological re-analyses Local data sets

CRU GHCN SRB ERA-40 ERA-Interim MERRA NCEP2 Agrhymet Banizoumbou Wankama ARM

P (mm year−1) 0.81 – – 0.31 −0.06 −0.16 −0.02 – – −0.95 –
8 – – 266 194 354 222 – – −4.4 –

Ta (∘C) 0.88 0.91 – 0.71 0.86 0.61 0.69 0.74 −0.51 0.91 –
−0.03 −0.19 – 0.49 0.43 0.12 1.60 0.36 0.84 0.30 0.11

q (g kg−1) – – – 0.82 0.69 0.08 0.71 – – 0.79 –
– – – 0.11 0.21 0.86 0.12 – – 1.60 2.06

RH (%) – – – 0.80 0.63 0.33 – 0.79 0.85 0.11 –
– – – 2.4 2.9 6.2 – −1.8 −1.4 5.2 7.5

U (m s−1) – – – −0.17 0.23 – – – – −0.5 –
– – – −0.2 −0.4 – – – – 0.8 –

SWdown (W m−2) – – −0.14 −0.16 0.39 0.07 −0.13 – 0.89 −0.13 –
– – −18 8 123 2 −10 – −20 −10 −12

LWdown (W m−2) – – 0.37 0.54 0.50 0.39 0.73 – – 0.95 –
– – 6 5 13 21 14 – – 4 0

Table 7. Mean annual energy budgets (W m−2) for millet and fallow bush land cover types over 2006–2009, for the NAD and
Wankama data sets.

Data set SWdown SWup LWnet LE H G

NAD-Sm 242.7 (100%) 75.5 (31%) 103.8 (43%) 30.8 (13%) 31.1 (13%) 1.5 (∼0%)
Wankama 251.6 (100%) 77.4 (31%) 103.3 (41%) 29.8 (12%) 41.0 (16%) 0.1 (∼0%)
NAD-Sf 242.7 (100%) 77.7 (32%) 98.5 (41%) 32.6 (14%) 32.5 (13%) 1.4 (∼0%)
Wankama 248.6 (100%) 79.0 (32%) 97.7 (39%) 32.3 (13%) 40.1 (16%) 0.2 (∼0%)

annual and diurnal cycles. These networks, when prop-
erly trained, could offer an alternative to commonly
used formulae (Brutsaert, 1975; Hargreaves and Samani,
1982; Prata, 1996). Note that the gap-filling methodology
developed here could be easily applied to other synoptic
stations where long-term data are available. More gener-
ally, the significance of trends in ensemble data sets, as
the one constructed in this study, could be assessed by
analysing each individual ensemble member separately,
and applying a statistical test based on the percentage of
members for which a given trend is detected.

Concerning estimated variables, precipitation and
temperature were the most robust, with respect to
complementary data sets. Trends in precipitation observed
by Lebel and Ali (2009) for Central Sahel were satis-
fied. Temperatures were in good agreement with CRU
and GHCN and showed a strong increase by ∼1 ∘C
in mean annual temperature between the 1950s and
2000s, in accordance with another Sahelian site (Hom-
bori, Mali; Guichard et al., 2015) and compared to
the 0.85 ∘C global warming during 1880–2012. Fur-
thermore, inter-annual variability and trend in Ta were
in good agreement with mean regional values. All
hydrological and land surface variables, although to a
lesser degree for SWdown, q and H, showed satisfying
diurnal and seasonal cycles compared with recent data
from proximate sites (Guichard et al., 2009 and Velluet
et al., 2014).

Some limitations to the methodology applied in this
study appear. First, the multivariate analogue method

is a delicate balance between the number and quality
of similarity criteria used and the flexibility of these
criteria to obtain reasonable pool sizes. Thus, some
second-order conditions such as known non-stationarities
over the period (essentially, the characteristics of rain-
storm events in the 20–35 mm range, Lubès-Niel et al.,
2001; sub-daily temperatures, Guichard et al., 2015)
could not be accounted for. Second, the land surface flux
components of the data set provide a long-term local
reference, in accordance with proximate observed data
(Velluet, 2014; Velluet et al., 2014). However, they are
modelled from a single SVAT model, compared with
the NAD-M components that are based on observed
data. Due to the lack of long-term observational data
of these variables, these first estimates need to be con-
firmed, possibly using a multi-model intercomparison
approach based on models adapted to local conditions,
such as SiSPAT. A third limitation, inherent to the use
of historical data, concerns potentially undetected errors
within the raw data or changing station characteristics.
The BEST metadata (Rohde et al., 2013) only indicate
a move of the station in 1950. Further verifications
(displacements, change of sensors, etc.) are difficult to
undertake due to the lack of metadata. The wind speed
anomalies cannot be considered as inconsistent with
the other variables, however wind speed data being
particularly sensitive to measurement conditions, pos-
sible heterogeneity in original data cannot be entirely
dismissed. Concerning the possibility of adjusting the
series for spatial consistency, the comparison of Ta with
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Figure 10. Annual air temperature (Ta) over 1950–2009: (a) comparison
of Ta temporal anomaly in the BEST data set (𝛿Ta, yearly difference
from period mean) over different domains, showing consistency across
scales in West Africa compared to global land domain. (b) Comparison
of NAD with BEST and GISS data sets, including ‘quality controlled’
and ‘adjusted’ series. Adjusted series take into account the consistency

of a spatial network.

adjusted series that do take into account this consis-
tency (GISS, Hansen et al., 2010; BEST) shows that
differences are smaller between the two versions from
a given source (quality controlled versus adjusted) than
between the different sources (Figure 10(b)). Fourth,
although it has been shown that fluctuations of LWdown
are driven by air temperature (Slingo et al., 2009) and
vapour-pressure (Culf and Gash, 1993; Stephens et al.,
2011), a humidity term was not used in its estima-
tion as the neural networks were sensitive to inter-site
variability of q. Future research should focus on improv-
ing the estimation of LWdown and SWdown and their
long-term fluctuations. Finally, the fifth and main short-
coming of this data set is evidently that is it not spatially
distributed, limiting modelling applications to local-scale
analyses.

5. Conclusion

Important environmental changes have occurred in the
Sahel region over the past 50 years, in a context of very
high population growth and vulnerable rural societies.
Robust modelling of the environmental systems would
help to better understand these changes, but is impeded
by data scarcity when the decadal timescale is considered.
Serious for meteorological data, this problem is even more
acute when it comes to land surface response variables
for which no long-term, field-based series exist. As a
first step towards alleviating this problem, we have built
a 1950–2009 continuous, high-temporal resolution local
data set, covering both groups of variables with the second

one (NAD-S) being derived through model simulation
from the former (NAD-M).

Despite the limitations discussed, the NAD series (1)
offers a unique length and resolution, (2) provides a good
representation at the diurnal to annual scales, (3) maintains
inter-variable coherence, (4) reflects the uncertainty of
the reconstruction methods for the meteorological data
through an ensemblist approach, and (5) is representative
of known inter-annual variability and trends for at least
P and Ta. We believe that this data set is substantially
more reliable than many commonly used data sets. Indeed,
contrary to many gridded data sets, this local data set is
based solely on observations and not on meteorological
re-analyses that suffer from many deficiencies in the Sahel.
Albeit being a point data set, it may represent in statistical
terms a large Central Sahel region, thanks to the high
degree of longitudinal stationarity in Sahelian climate and
the length of the series.

This data set could serve as a high-quality baseline
for climate change impact studies, in particular to eval-
uate historical Global Climate Model estimations, mete-
orological re-analyses and larger scale surface data sets
(Sheffield et al., 2006; Weedon et al., 2011). As a con-
tinuous high-frequency data set, it can also be used
in a variety of land surface, vegetation and hydrologi-
cal modelling exercises (e.g. Leauthaud et al., 2015 and
Appendix S4 for guidelines). Public data distribution being
an important issue for climate and environmental stud-
ies, especially in this region, the NAD data set will
be made available through the AMMA-CATCH website
(http://www.amma-catch.org/spip.php?article240).
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Appendix

A1. Performances of estimation procedures
A1.1. Evaluation of deterministic methods
Spline interpolations and linear regressions of synop-
tic data

Only a small number of data points were estimated by
spline interpolation in step II.1 (11% for Ta and <4%
for RH and Pa). Nonetheless, results were verified by
comparing simulated values to a randomly selected set
of observed values from the original synoptic data sets.
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Table A1. Mean, bias, root mean square error (RMSE) and
Nash-Sutcliffe (NS) coefficient between observed and estimated
(spline interpolation) values, calculated on validation subsets
from the raw data at the Niamey airport station or at the Wankama

station.

Variable Data set Step Mean Bias RMSE NS

Ta (∘C) Original
synoptic series

Step II.1 29.1 −0.1 1.7 0.91

RH (%) Original
synoptic series

Step II.1 41 ∼0 6 0.93

Pa (hPa) Original
synoptic series

Step II.1 984 ∼0 1 0.82

Ta (∘C) Wankama Step III 29.6 ∼0 0.7 0.98
RH (%) Wankama Step III 35 ∼0 2 0.99
Pa (hPa) Wankama Step III 983 ∼0 ∼0 0.96
U (m s−1) Wankama Step III 2.2 ∼0 1 0.80

Measured and simulated values showed good agreement
with low bias and high Nash–Sutcliffe (NS) coefficients
for all three variables (Table A1).

Concerning the gap filling of RH in step II.2, a total
of 905–1114 data were used to estimate synoptic RH for
given DoY and HoD by linear regression between Ta and
RH. RH data for which the regression test performed with
a p-value< 0.05 and R2 > 0.6 were filled, corresponding to
6% of RH.

Spline interpolation in step III was validated on the
Wankama data set, using the same procedure as in step II.1.
Measured and simulated values showed good agreement
with low biases and high NS coefficients for all variables
(Table A1).

Estimation of downwelling radiation
Fourteen sets of input data were tested to estimate

SWdown (see Appendix S2). All comprised extraterrestrial
radiation Rext, DoY and HoD, and differed by the pres-
ence or absence of Ta, q and P. The artificial neural net-
work (ANN) constructed at the Wankama site that used
Ta and P and presented a low RMSE (RMSE= 78 W m−2

for a mean of 493 W m−2 for the validation population)
was selected. It was less efficient during the rainy sea-
son (RMSE= 89 W m−2) although SWdown during rainy
events was better simulated (RMSE= 83 W m−2). This
ANN for SWdown simulated the output variable with a
high NS coefficient (NS> 0.9) for both the Wankama and
ARM data sets, although estimations were slightly biased
negatively in both cases (Table A2). The mean bias at
Wankama was substracted for the estimation of SWdown
in NAD.

Input variables for LWdown were selected from fourteen
sets, in a similar way to SWdown (see Appendix S2). For
the final selected ANN, also using Ta and P, RMSE was
quite low (RMSE= 15 W m−2 for a mean of 392 W m−2

on the validation population). The ANN was more effi-
cient during the rainy season (RMSE= 12 W m−2) and
during rainy events (RMSE= 12 W m−2). This ANN
also simulated LWdown well at the ARM site (NS=0.87)
(Table A2).

Table A2. Mean (W m−2), bias (W m−2), RMSE (W m−2) and
Nash–Sutcliffe NS (−) coefficients for 30 min SWdown and
LWdown estimated by ANNs in step IV, for the ARM and

Wankama series.

Variable Data sets Mean value Bias RMSE NS

SWdown Wankama 491 −7 78 0.93
SWdown ARM 497 −17 79 0.93
LWdown Wankama 392 0 15 0.87
LWdown ARM 389 −2 14 0.87

A1.2. Quality of the analogue and other stochastic
methods

Relevance of criteria for the analogue method
A whole set of criteria were used in the analogue method

to constrain reconstructed data by observed data and to
retain coherence between variables at the sub-daily scale.
First, pool classes were circumscribed by observed Tamean,
RHmean and P24 h, so that the reconstructed ensemble
member 3-h or 5-min Ta, RH and P variables preserved
these daily features of the observed data. Second, based
on the analysis of the ratio of synoptic temperature Ta
over the potential maximal synoptic temperature (noted
Ta/Tacs), the analogue method also retained when possible
the co-variation of the hydro-meteorological variables
throughout a rainfall event (Appendix S1 for technical
details). Third, in the rare case where precipitation P5 min
was reconstructed in the absence of P24 h, rainfall occur-
rence was again constrained by synoptic temperature.
Indeed, the daily minimum ratio of synoptic tempera-
ture Ta over the potential maximal synoptic temperature
(Ta/Tacs) was also found to be significantly different
between rainy days and non rainy days (0.73± 0.08 and
0.81± 0.06, respectively), during the rainy season (t-test,
5% significance level): a rainfall event was hence recon-
structed when Ta/Tacs <0.8. Finally, in the last case where
daily values of synoptic data were unavailable, pools were
formed with data from a 30-DoY window so that the
seasonal cycle at least was preserved.

Random selection and recursive gap filling
In the case where the analogue method was not retained

(representing only <1% for Ta and RH, and 43% for
Pa. Note however the low inter-annual variability of
Pa, Table 5), data were randomly selected from the
observed data available within a 30-DoY window. Pa,
which mainly presented seasonal variability, was hence
well reconstructed. Similarly, all missing data for wind
speed were reconstructed by recursive gap filling. In both
cases, these methods, although they do not constrain the
reconstructed data tightly, at least enabled an estima-
tion of the uncertainty ranges in the absence of reliable
predictive data.

A2. Specifications of the global and re-analysis
data sets

Characteristics of the gridded data sets are provided in
Table A3.
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Table A3. Specifications for the global or re-analysis data sets. ‘NCEP2’ refers to the NCEP/DOE AMIP-II Reanalysis
(Reanalysis-2). Websites are specified in Appendix S3.

Data set Period Grid
(lon–lat)

Variables
extracted

Temporal
resolution

Number of
cells used

References

MERRA 1979–2010 0.67∘–0.5∘ Ta, LWdown, Pa,
q, RH, SWdown,
U, P

Annual 2 Rienecker et al., 2011

GHCN 1950–2009 0.5∘–0.5∘ Ta Annual,
monthly

4 Fan and van den Dool,
2008

CRU TS3.10 1950–2009 0.5∘–0.5∘ Ta, P Annual,
monthly

4 Mitchell and Jones,
2005; Harris et al.,
2014

SRB 3.0 & 3.1 1984–2007 1∘–1∘ SWdown,
LWdown

Annual 9 –

ERA-40 1958–2001 1∘–1∘ Ta, RH, q,
LWdown,
SWdown, P

Annuala 4 Uppala et al., 2005

ERA-Interim 1979–2010 1∘–1∘ Ta, RH,
LWdown,
SWdown, P

Annuala,
3-Hourb

4 Dee et al., 2011

NCEP2 1979–2013 1.9∘–1.9∘ Ta, q, LWdown,
SWdown, P

Annual 4 Kanamitsu et al., 2002

aAnnual data from the 6-h analysis values, except SWdown and LWdown. bThe 3-h forecast data set included Ta (2 m), LWdown, SWdown, RH, q, U
(10 m), P. Pa (6 h resolution) was used to calculate q at a 3-h resolution.

Table A4. List of corrections/adjustments applied in step I.

Context Data sets
or variable

Concerned data
volume (%)a

Comments

Incoherent
meteorological
data

Ta 0.03 Ta max. and min. thresholds set to 45 and 9 ∘C, respectively
RH <10−4 RH> 100%: RH set to 100%
U 20 Inconsistent unit in SYN1 from 1967 to 1980 (rel. to SYN2): SYN1

values corrected (from kt to m s−1) over the period
U 0.02 U max. threshold set to 25 m s−1

Pa 0.1 Pa max. and min. thresholds set to 1000 hPa and 970 hPa, respectively
DLY1 0.2 Abnormal rain event changed to missing data
DLY2 4 Tamean from DLY2 incoherent with SYN2 or SYN3: Tamean not used in

analysis
DLY2 28 RHmean from DLY2 incoherent with SYN2 or SYN3: RHmean not used

in analysis
Incoherent rain
data

P5 min 0.4 P24 h > 0 & ΣP5 min = 0: P5 min set as missing data

DLY1 0.15 Rainy day from P24 h found one day after ΣP5 min: P24 h modified to fit
with P5 min

DLY1 0.03 Rainy day from P24 h found one day before ΣP5 min: P24 h modified to fit
with P5 min

Discontinued
rain event data

P5 min 38 Missing P5 min values within days for which P24 h and ΣP5 min were
concordant, were set to 0

aTotal amount of data per variable (n): DLY1 and DLY2: n= 23337; Ta, RH, U and Pa: n= 187.103; P5 min: n= 6.7.106.

A3. Corrections applied in step I

During assemblage of the different series into series of
identical temporal resolution, when concomitant data from
different series were discordant (e.g. different values at the
same time for two series), the most coherent data (e.g.
correct rainfall pattern) from the longest series (case of
FVE1) and coming from the same source (case of SYN1
and DLY1) were kept. All corrections applied in step I are
listed in Table A4.

Supporting information

The following supporting information is available as part
of the online article:
Appendix S1. Description of the multivariate analogue
method.
Appendix S2. Training procedure of the artificial neural
networks.
Appendix S3. Websites to access the data used in this
study.
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Appendix S4. Guidelines for the use of NAD.
Appendix S5. Choice of input data for the neural net-
works.
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