the DIURNAL CYCLE of DEEP CONVECTION OVER LAND: contribution from EUROCS

Guichard^{*}, Petch[£], Chaboureau^{*,#}, Redelsperger^{*}, Beau^{*}, Grenier^{*}, Jakob[#], Jones[§], Koehler[#], Lafore^{*}, Tailleux[&] and Tomasini^{*}

CNRM*, ECMWF#, Met Office[£], LMD[&] and SMHI[§]

GCSS 20-24 May 2002, Kananaskis, Alberta, Canada

EUROCS : EUROpean Cloud Systems

- ✓ 3-year project funded by the European Union (Mar 2000 Feb2003)
- \checkmark aims: improving the treatment of cloud systems in global and regional climate models
- ✓ strong links with GCSS (GEWEX Cloud System Study)

concentrates on 4 major well identified deficiencies of climate models: ✓ stratocumulus over ocean (Duynkerke, De Rhoode & Grenier) WG1

✓ diurnal cycle of cumulus (Lenderinck & Siebesma)

✓ sensitivity of deep convection to the moisture profile (Derbyshire) idealized runs with RH nudged to prescribed values

✓ diurnal cycle of deep convection over land (Petch & Guichard)

bring together modelers dealing with a hierarchy of scales *obs* ⇐⇒ LES & CRMs --- SCMs --- RCMs & GCMs ⇐⇒ obs

www.cnrm.meteo.fr/gcss/EUROCS/EUROCS.html & J.-L. Redelsperger

OUTLINE

context

□ examples of GCM and RCM results

□ work on GCSS-WG4 case 3a

□ an idealized case, preliminary results

□ conclusions & future work

mosaic « talk » toward our activities

CONTEXT

Fundamental mode of variability of the climate system

important role in the energy & water budgets

what we know (dozens of articles)

- ✓ stronger over land than over ocean
 (30-50% & 10-20 % of the total variance resp.)
- ✓ phase difference between land & open ocean areas over land: afternoon-evening maximum over ocean: early morning maximum (various theories)
- ✓ season dependent (stronger in summer)
- ✓ daytime boundary layer heating (over land)
- ✓ but also coupled to regional effects, orography, regimes (E/W LBA)
- ✓ life cycle of MCSs

 \checkmark changes in the last decades over the US

CONTEXT

modelling

- \checkmark relevant & demanding test for GCMs
- \checkmark assess physical parameterizations & how they interact
- ✓ difficult to reproduce by GCMs *(next slides)*
- ✓ monthly mean & diurnal cycle both correct at the same time: quite challenging

Yang & Slingo (2001)

estimated precipitation

satellite data, CLAUS project, summer 1985,86,87,92

amplitude of the diurnal harmonic

Yang & Slingo (2001)

precipitation: amplitude of the diurnal harmonic

quite resasonable agreement (caution: not at all the case for all GCMs!) *frequently too weak, e.g. Royer et al. (2000), Lin et al. (2000), Dai et al. (1999)*

Yang & Slingo (2001)

precipitation: phase of the diurnal harmonic

precipitation too early by several hours compared to observations

PHASE OF THE DIURNAL HARMONIC IN 3 GCMs J.-M. Piriou

OBSERVATIONS Yang & Slingo (MWR, 2001)

ARPEGE NWP model Piriou (2002)

IFS NWP model Beljaars (2002)

UNIFIED CLIMATE model Yang & Slingo (MWR, 2001)

> GCMs wrong in the « same way »

Regional Climate Modelling Colin Jones

an example: most frequently occuring time of max precip. in a diurnal cycle (June 10-July 31 1993) *more information on the EUROCS web site*

the model captures the broad early-late evening max of rainfall

COMMON CRMs/SCMs CASE STUDY

•

: an « observed case » to assess our models over land (GCSS/ARM)

GCSS WG4 Case3a (ARM Southern Great Plains)

✓4-day runs with deep convection occuring
 ✓large-scale advections prescribed from observations
 ✓ fixed surface heat fluxes
 ✓ wind nudged towards observed
 ✓ cyclic lateral boundary conditions

case part of the GCSS intercomparaison exercise for CRMs Xu et al. (2002) & SCMs (Xie et al. 2002)

2 : building an « idealized case » to address the diurnal cycle of deep convection over land and its representation in models

THE SIMULATIONS : 5 (maybe 6?) SCMs & 3 CRMs

model type	lab (model name)	participants
SCM	CNRM (ARPEGE Climat)	Beau & Grenier
SCM	ECMWF (IFS)	Chaboureau, Jakob & Koehler
SCM	LMD (LMDz)	Tailleux
SCM	Met Office (UM)	Petch
SCM	SMHI (close to HIRLAM)	Jones
CRM	CNRM (mésoNH)	Chaboureau & Tomasini
CRM	CNRM (comeNH)	Guichard
CRM	Met Office (UM)	Petch

CRMs : Lx ~ 500 km Dx ~ 250m to 2km Dz ~ stretched 70-700m or less mostly 2D & but a few 3D runs SCMs : Dz : 18 to more than 60 vertical levels

closer « cross-scales » collaborations, e.g., CNRM-ECMWF (Chaboureau & Koehler)

✓ broad conclusions in agreement with Xu *et al.* (2002) & Xie *et al.* (2002) new test for 50% of models not part of the exercise above

an example : comparison with obs, min-max envelope for CRMs & SCMs

better agreement & less scatter among CRM results that SCM ones

comparison CRMs & SCMs (no observations)

scatter linked to the microphysics for CRMs in the upper troposphere
 obviously room for CRMs improvements

➤ however much more consistency among CRMs than SCMs

very weak convective downdraughts in several SCMs

CRM sensitivity studies

 importance of horizontal resolution boundary layer fluxes
 importance of subgrid scale processes mixing length formulation subgrid scale microphysics

interactions between paramaterizations, 1st problem for several SCMs:

a lot of noise in many SCM runs deep convection turned successively on/off

(not seen from 3-h mean)

➤ impact on cloud properties

need to document why

zoom on the 1st part of the simulation NORMALIZED RAINFALL observations explicit models [CRMs] 4 parameterisations [SCMs] (unitless) 2 0 0 3 6 9 12 15 18 21 24 local time

rainfall « in advance » for many SCMs

THE IDEALIZED CASE

why?

- > most deep events not linked to our aims (SGP area « particular »)
- this GCSS/ARM case not specifically designed for this purpose
- > motivated by Betts & Jakob (2002): GCM problem reproduced in SCM

□ same framework of previous case except:

 ✓ 27 Mai 1997 of GCSS case 3a repeated twice large-scale vert. adv. (relatively weak) & prescribed surf. fluxes (+new set prepared)
 ✓ 48 h run, begins in the morning instead of the evening

□ links with WG1 (EUROCS) ARM case of shallow cumulus case

THE IDEALIZED CASE

results still preliminary, work still in progress !

 rainfall events tend to occurs earlier in SCMs than CRMs (3 SCMs at least)

> + similar findings as before (e.g., noise & no or weak downdraughts)

THE IDEALIZED CASE

predictability issues in CRMs (raised by J. Petch)

- ✓ different initial random noises lead to various rainfall rates
- \checkmark timing is a more robust feature
- ✓ weaker spread with more realistic surface heat fluxes

sensitivity to the domain size?

THE IDEALIZED CASE: different transition regimes in CRMs and SCMs

CONVECTIVE (IN)STABILITY

- ✓ strong diurnal variation of CAPE & CI N
- ✓ large amount of CAPE
- ✓ lower CI N mean values correlated with rainfall events, not CAPE

QUESTIONS:

➤ performances of our models?

boundary layer θ_v , θ_e , RH

CAPE, CIN

CRMs/SCMs differences?

observations (Xie et al. 2001)

work on more sophisticated stability parameters: Remi Tailleux

THE IDEALIZED CASE : Convective INhibition

✓ almost no CIN in SCM runs during daytime (true for at least 4 SCMs) !

- ✓ challenging for CRMs too
- ✓ CIN strongly modulated by convective activity in CRMs
- ✓ impact of convective downdraughts

distinct links between convection & stability in CRMs & SCMs need to investigate the « why »

CONCLUSIONS / FUTURE WORK

✓ documentation of GCMs & RCM weaknesses

✓ assess CRM/SCM models over land with GCSS/ARM case
 ✓ better results/consistency among CRMs than SCMs
 (agreement with GCSS work)
 design an idealized « diurnal cycle case » to address the problem

✓CRM runs : the treatment of the BL is crucial ! increased horizontal resolution &/or subgrid-scale processes

✓ deep convection often occurs earlier than observed in SCMs
 ✓ no succession of dry-shallow-deep regimes in SCMs, dry to deep
 ✓ complex sensitivity to triggering criteria & downdraughts formulation
 ✓ no CLN during daytime in many SCMs

 ✓ further analysis of CRM & SCM runs (document, explain + sensitivity tests: trigger, downdraughts/resolution, size)
 ✓ test of new formulations in SCMs & then GCMs the end, thank you