

Preliminary LES simulations with Méso-NH to investigate water vapor variability during IHOP_2002

F. Couvreux (fleur.couvreux@meteo.fr), F. Guichard, V. Masson, J.-L. Redelsperger, J.-P. Lafore CNRM-GAME, Météo-France,42,av. G. Coriolis 31057 Toulouse France

<u>Méso-NH</u>: a non-hydrostatic mesoscale atmospheric model of the french community (Lafore et al., 1998, *Ann. Geoph.*)

Configuration: Large Eddies Simulation from an initial sounding

	1D simulation	First 3D simulation
Δx, Δy, Δz Radiation Turbulence	from 20m to 250m ECMWF radiati 1D (Bougeault-Lacarrere) 1.5 order	100m, 100m, 100m to be increased on code 3D (Deardoff)
The 1D simulations :	With different initial profiles (MGL2-1120UTC, MGL2- 1216UTC, composite of soundings) With different surface fluxes (station ISSF 1, station ISFF 2, Bo=1/2, surface scheme ISBA) Without or with L-S forcings deduced from MM5 or from soundings	

14 June 2002, a Boundary Layer Evolution case

Clouds : scattered cirrus

- > Past : precipitation the two days before => wet soils
- ▶ Winds : light winds (< 6m/s) from N and NE

> BL structure observed: convective plumes and growing thermals in the afternoon, $h_{CBL} \approx 1500 \text{ m}$

Visible satellite at 2000 UTC

θ Profiles at 1130 UTC

is day is characterized by a high pressure and a North(-)-South(+) humidity gradient over the region Several dry layers are visible on soundings (for example VICI) - complexe structures.

<u>3D-preliminary results of BL structures :</u>

•Model input:

- -soundings (Mobile, ISS, NWS)
- ISSF (surface fluxes)

•Evaluation:

- -AERI, MAPR, HARLIE, FMCW
- -satellite
- -radars (S-Pol: reflectivity and refractivity fields)
- -lidars (LEANDRE II, DIAL, Scaning Raman Lidar)
- -surface stations
- soundings
- -King-Air in-situ data

Definition of the LES: some 1D sensitivity tests

The definition of initial profiles, surface fluxes and large-scale advection is not straightforwar A significative small-scale variability (1-2 K in θ and 1-2 g/kg in rv).

sk. B

rv Profiles at 1130 UTC

Conclusions :

•Definition of the LES case study (initial profile, surface fluxes and large-scale advection).

•Tools available to study turbulence and water vapor heterogeneities.

Perspectives :

To determine and analyze water vapor variability simulated by Méso-NH in the lower levels of atmosphere (diurnal variations, horizontal heterogeneities...)

- To compare this variability to the observed one focusing on LEANDRE II dat
- To use the model as a tool to understand : processes involved in this variabil
 - the different sources of this variability (e.g., using Lagrangian trajectories)